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__Abstract

The purpose of this study was to develt_-p a ,omputer

pr-gram that i-Lcorporates etticient techniques tcr soiv.ni

optiization I of experimental test or ciu ati-n models .he

program is interactive and user-friendly. The program is

written in Fortran but can be attach to any simulation model

or exper tment. The program is limited to two ,ndependen:

variables and one dependent variable. The al ri thm -,t _e

m.ai:n program is steepest ascent partan.

The study compared several gradient methods an, tound

* 2-k !actorial the most efficient. The study also concluded

that ,a'vi:zs , wann , and Campey ,- owe was :he N,( -t

use',u, itn,_ search. The study uses an :m pr :ement:y ratx

tc the BARTAN method to el im.nate tne : thda - e searon.

.he ;.- ram is designed to elt icient 1; solle .ei, :.i- pe

equations and less efficiently higher order equatto:ns.
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SEARCH: AN INTERACTIVE COMPUTER PROGRAM

FOR OPTIMIZING TWO-VARIABLE, UNCONSTRAINED

EXPERIMENTS OR SIMULATION

I. nrduBakgrond

In science, industry, military operations, business and

most facets of life, countless effort is spent trying to

improve 'production' and maximize one's output. For some

examples, in chemistry, what amount of chemical A mixed with

chemical B produces the largest amount of product C. In

military operations, how many and of what type weapon should

attack which targets to optimize the damage expectancy. In

business, how many of a certain item type should be ordered

to minimize storage while maximizing sales. Or, in one's

personal finance, what amount should be paid on certain

debts and what amounts should be invested in which type of

savings to maximize one's wealth. So, whether it is the

right amount of an input that produces the best output or

the correct number of inputs to provide the best results,

optimization is a problem dealt with almost daily. Hillier

and Lieberman point out, 'this 'search for optimality' is a

very important theme in operations research' (3:5).

Operations research covers a broad spectrum of

optiizaionprogramming. At one end lies the well

I-



developed linear programming with its maximization of a

linear objective function and restrictions by linear

constraints. Going down the spectrum in limitations, one

finds the lesser developed non-linear programs such as

quadratic, geometric, and fractional programming. These

algorithms still optimize an objective function, but the

restrictions of linearity are relaxed. Still further down

this restrictive ladder, one comes to direct search methods.

Here, optimization of the problem is still the goal, but the

formula of the objective function is unknown. Direct search

techniques use experiments (trial and error) to gain

information about the optimum. This method involves either

experimenting with the real system itself or experimenting

* with a simulation model of the system. This search category

includes techniques such as exhaustive search, random

search, and direct search.

*Wilde clarifies this category of problems as follows:

The search problem is to find, after only a few
experiments, a set of operating conditions yielding a
value of the criterion y which is close to the best
attainable. From another point of view, the problem is
to reach a specified minimum acceptable level of
performance in as few trials as possible.
Geometrically speaking, we would like to climb up the
ro sponse surface as quickly as possible, even though
the only information we have about the surface comes
from the past experiments we have run [9:64].

New and better search techniques are evolving as the

research for more efficient methods is continued. The
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thrust of this study and criterion of effectiveness of

methods is efficiency in reaching the optimum. More

efficient is defined as requiring fewer experiments to reach

the vicinity of the optimum. Thus, better, more efficient

methods arrive at the optimum using fewer experiments or

simulations.

The simplest, and probably first, search technique used

* was the exhaustive search, or mere enumeration. This

technique involves looking at all possible combinations of

input variables and selecting the combination giving the

highest output. This accurate method probably saw a short

rebirth with the advancements of computers. The exhaustive

method works finip for small problems; however, even with

* computers, a more efficient method is needed to save time

and cost.

Since with exhaustive search it might often times be

prohibitive, random search might be used. This involves

randomly selecting input combinations for testing. The

problem with random search is never knowing when the optimum

has been reached unless all points are tested. If -only a

few experiments are possible, random search might be

considered the best choice for a large problem-

From the need for a more scientific method, the direct

search methods were develo~ped. Direct search is a planned.

mathematical search that leads one to the optimum. Over the

last thirty years there have been numercnus direct search

13



plans developed. Search plans basically fall into two

categories: simultaneous and sequential. Plans specifying

the location of every experiment before any results are

known are called simultaneous, while a plan permitting the

experimenter to base future experiments on past outcomes are

called sequential (8:5). Simultaneous search plans, usually

called experimental designs, have been developed that

* systematically test po)ints in a specified region of

interest. Response surface methodology (RSM) takes the

experimental design and calculates an estimated equation of

the real system from which an expected optimum can be

derived mathematically. Numerous sequential search

algorithms have also been developed. These algorithms

imp generally entail the use of gradients, directional line

searches, geometry, and sometimes curve fitting.

Frequently, engineers are given problems to solve in

which they want the optimal solution (either maximization or

minimization) and no equations or formulas exist of the

objective function. Thus experimenting (or simulating)

provides the only clues for the location of the optimum.

There is a need for a computer software program that

guides a Person to the optimum whether maximum or minimum

when only simulation or experimentation is available. it

should combine various efficient direct search techniques in

1-4



an algorithm to expedite the search. It should employ

simple techniques that a practicing engineer should

understand. It's goal should be to minimize the number of

experimental tests (simulations) required. Basically, it

should be simple for the user to implement and use.

eearcth Qbjectives

0 The overall objective of this research is to develop an

interactive, user-friendly computer package which allows one

to find the optimal response to experimental test or

simulation models. The program will contain the most

efficient search techniques. The program will quickly solve

for the optimum for quadratic surfaces and many higher order

equations.

Subobjectives of this research effort are as follows:

(1) The efficiency of different techniques during

different phases of the program compared in order to select

the most efficient techniques for the program. The measure

of effectiveness for efficiency being the least experimental

4 trials needed for the required accuracy.

(2) A verification of the computer program

accomplished showing that it does solve optimization

problems. This would entail taking various problems and

checking to see if the program can find the optimal

o solution.

I
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The limitations of this research are:

(1) The independent (input) variables are limited to

two and they are continuous real variables.

(2) There is a single dependent (output) variable from

the model considered in the program.

(3) The only experimental designs used are a 2-K

factorial for first-order equation fit and a 3-K factorial

for second-order equation fit.

(4) Experimental error is mainly handled by repeating

the simulation test and then averaging the results. The

lnumber of repetitions are at the discretion of the user.

(5) The validation of the user friendliness of the

program is accomplished by having a fellow student run the

program unaided to solve a problem.

Summary

This chapter briefly discussed the general background,

problem statement, research objectives, and scope pertaining

to this research. The next chapter will discuss the

literature and methodology pertinent to this research

effort.
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II. Lit-erature And Methodology

In the past, the practical method known for handling

optimization problems was the classical differential

calculus. However, the classical method is impossible to

use when the objective function is undefined. Therefore, an

indirect method of finding the optimum using trial and error

must be used. Wilde gives the name "optimum seeking

procedures" to the strategies guiding search for the optimum

of any function about which full knowledge is not available

(9:viii).

Flan QL Attack

The only way to gain information about an unknown

function is by direct measurement, in other words

experimentation (5:vii) . In this optimum seeking method,ifi
each experiment has two purposes, not only to attain a good

response surface value, but also to give information useful

for locating future experiments where desirable values of

the response surface are likely to be found. Thus,

throughout the search one must continually be deciding to

climb or to explore. At the beginning, when nothing at all

is known about the function, one must explore in some small

region, usually chosen as a best guess, so that one might

place the following experiments in an uphill direction. In

the middle of the search, after having explored some region,

S" II - 7
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one tries to climb as fast as possible, exploring only when

Ostrictly necessary to guide the successive steps. Toward

the end of the search, when one is finally near the top,

extensive exploration may be needed to attain any increase

in elevation, the slope of the response surface often being

slight near the optimum (9:64).

An analogy to this plan of attack might be like a blind

man climbing to the top (highest point) of a mountain. At

the bottom of the mountain, he probes around with his cane

to find the steepest uphill slope. After this initial

exploring, he proceeds in this uphill direction until he

reaches a point where he starts to go downhill. At this

point he probes around this area for a new uphill direction

and proceeds uphill again. This continues until he reaches

the top and can find no new uphill direction. At this time,

he explores extensively around the top to find the upmost

highest point. The direct search method is similar to this

blind man's search in that one cannot see where one is

going, but only by probing with experiments, like searching

with a cane, can one get the direction to the optimum.

The three phases of the attack plan will now be

discussed separately. The beginning exploratory phase to

find the uphill direction will be called the gradient phase

The middle climbing phase will be called the acceleration

phase. The final phase exploring the top will be called the

second-order exploratory phase

S . . .



aradient Thase

In this phase of the search, one is exploring for the

uphill gradient (slope) of the response surface from the

initial starting point. As mentioned earlier, if the

function is known, derivatives could be taken at this point

to find the gradient. Since it is unknown, another way must

*be determined to attain the gradient. Note--This is one of

the main differences between some non-linear programs and

these direct search techniques.

Wilde proposes one method of obtaining the general

slope of the response surface in the neighborhood of the

initial point. First, find the gradient in the xl-direction

parallel to the xl axis. To do this, one varies the x,

value slightly while holding the x2 coordinate at x20 t he

initial x2 value) allowing just enough distance between xl

and xl0 (the initial xl value) to make the outcome yl

distinguishable from yO (the initial y response va.uel The

* straight line through the points yO and yl lies entire., in

the plane of the x20 value and is approximatelv tarnen

the response surface at yO. The slope of this linp is ~iven

by yl-yO/xll-xlO. Now, a similar exploratory experiment is

done, but this time varying the x2 coordinate and holding

the xl coordinate constant at xlO. The straioht line

passing through y2 and yO lies entirely in the plane of xlO

* and the slope of this line is given by v2-vO/x22-x2 . The

i II - 9



three points yO, yl, and y2 on the response surface are

* enough to determine the plane approximately tangent to the

surface at yO. An equation of this plane would be of the

form y= bOblxl+b2x2 (9:65-68). From the above, one can

*deduce the direction to proceed from the initial point is on

a vector that goes y2-yO in the x2 direction while going yl-

yO in the xl directuon. Thus, with only two experiments an

Ar approximate direction to start the climb is found.

Another exploratory search method which uses from two

to four experiments is given by R. Hooke and T.A. Jeeves.

This method is similar to the previous Wilde method, but is

more sequential. The gradient is obtained as frllows: After

the initial point (xlO,x20) is evaluated for vO. xlO is

changed by an incremental amount, +rf, so that xjxI -rf

If the y response is an improvement over y0. then xll is

adopted as the new coordinate in the xl directien if

ixl0 rf falls to improve the response, xlO is changed by -rf

and the value of the y response again -hecked f,-r

improvement. If the value of y is not improved by e.ther

xlO * rf, xlO is left unchanged After the x. -

modified, then x20 is changed by an amouint, rf , and the

above test is repeated in the x2 direction t: c-rpiete :r.e

exploratory search. The successfully chanoed variables

define a vector from the initial point for A 'irection to A-

an acceleration phase (4 142-148)

II 10



W- - W- -' - W -W Wr r W-r- w _7_ __ T _7 W, V, W. 2. W7 Irv 1 w

Another method to find the gradient is to use a 2-k

factorial design and fit a first-order equation to the

response surface using RSM procedures. What are the

advantages of using a factorial design' Montgomery

concludes that factorial designs are more efficient than

one-factor-at-a-time experiments. Also, a factorial design

is necessary when interactions may be present, to avoid

misleading conclusions. Finally, factorial designs allow

effects of a factor to be estimated at several levels of the

other factor, yielding conclusions that are valid over a

range of experimental conditions (5: 192) . A 2-k design

would be like a box drawn around the initial point and the

four corner coordinates of the box would be used to obtain

response surface values (that is y values) The size of the

box should be small in order to better approximate the

tangent plane at the initial point, but not so small that no

effective change can be seen. After obtaining the four

responses, one can use RSM to fit an equation of the form.

y=bo+blxl+b2x2+bl2xlx2. A good explanation of the RSM

equation fitting is given by Meyers (6:43-50)

The following is how a 2-k factorial design works on

the initial point (xlO,x20). Let rf be the distance

selected in the xl and x2 direction for the size of tho box

% %I % 11



The four corners would then be:

(xln,x2p,ylh) (xlp,x2p,yhh)

(xl n ,x2n , y 1) (xl p.x2n ,yh 1)

where

x In =x 10- r f
x2n~x20-rf
x Ilp =x 10+ r f
x2p~x2O+r f

The first order equation fitting these would have

coefficients:

BO=(yll+ylh+yhh+yhl)/4 1
B1=(yhh+yhl-ylh-yll) 4
B2=(ylh+yhh-yll-yhl)/4 13)
B12=(yll+yhh-ylh-yhl)/4 (41

This first-order equation approximates the tangent

plane at yO. Bl provides the gradient in the xl Iret

and B2 the gradient in the x2 direction. However, if Bl12 is

not zero, then there is interaction and the surface

approximation is not a plane but a ciirved surfa-e Ti

BI and B2 slopes could be misleading if the interactin ~s

l arge .

The last exploratory search for a gradient *.- tP

examined is the 3-k factorial design. This des,,On ises

eight exploratory experiments and fits an Pqujativn *n a

second-order equation. This design provides mi re

information about the curvature -Df the rpsprns- zm-rface

around the initial point. The fr~leowing is a les-ription, )I

%I - %



the 3-k design. The 3-k design uses 9 points in a symmetric

square pattern. In addition to the four corner points of

the 2-k design, the 3-k needs four additional points.

(xl n x2p ,yl1h) (xl 0, x2p ymh) (xl1p ,x2p yhh)

(xln,x20,ylm) (xlO,x20,ymm) (xlp~x20,yhm)

(xln~x2n,yll) (xlO.x2n,yml) (xlp~x2n~yhl)

Figure 1. Nine Points of 3-K Factorial Design (6:51)

With these nine points, RSM can use this design to fit

a second-order equation to this response surface. The RSM

equation is of the form: y=BO+Blxl+B11xl'+B22x2-"+Bl2xlx2.

The coefficients of the equation are computed as follows:

BO =(yll~ylm+ylh4'ymI+ymm+ymh~yhl~yhm~yhh)/g
BI = (yhl+yhm+yhh-yll-ylm-ylh)/b r7)

B2 = (ylh+ymh+yhh-yll-yml-yhl)/6 (8)
Bll = (yll+ylm+ylh+yhl+yhh-2*(yml+vmm+vmh)/6 (9'
B22 = (yl1=yml~yhl~ylh+ymh~yhh-2(ylm=ymm=vhm)/6 10
B12 =(yll=yhh-ylh-yhl)/4 (11,

Similar to the 2-K design, BI provides the gradient in h4e

xl direction and B2 the gradient in the x2 direction

Thus, the i terature- searr-h has prc'ui-pI f, ir ways1% oill-iiate the gradient. Which of these is the most

efficient for the required plirprs4P' The 'in 1,1mpnsqinna I and(



Hooke-Jeeves method use the fewer number of experiments;

however, both calculate only one slope in each direction.

If there is the least amount of error in any of the

responses, it would affect the respective slopes greatly.

The 2-k, using just four points, calculates two slopes in

each direction and averages the result to get the gradient.

Consequently, it would be more capable in dealing with any

*margin of error. The 3-k calculates three slopes in each

direction and averages the result to get the best gradient

for handling noise error, but it needs eight additional

points. It needs four more points than the 2-k, but only

averages 1 more slope than the 2-k. From this comparison,

the 2-k design is the best. It will be used in the program

to determine the gradient.

Acceleration Phase

The acceleration phase is the actual climbing up the

hill. Again it is desirable to do this with as few

experiments as possible. Many algorithms have been proposed

on how to accomplish the ascent most effectively Nct all

of the algorithms will be discussed, merely those leading up

to the algorithm used in the program.

To begin with, the initial line search can be *hnlght

of as an unidimensional search along the Oradient vector.

The dilemma is how big of a step to take along "he vector.

One idea is to normalize the slopes to get a unit step along

II - 14
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the vector. One then takes uniform unit steps along the

vector. If the uniform unit step size is too small, it will

take numerous steps to reach the peak of the vector.

Likewise, if the step is too large, the climber might step

way beyond the peak. Thus, the uniform step size is not a

very efficient line search and adjusted-step line searches

have been proposed as an improvement.

Robbins-Monro method was one of the first and simplest

improvements over uniform step. It is based on the harmonic

sequence 1,1/2,1/3,1/4, etc. times the magnitude of the

* dependent variable. The harmonic sequence is divergent and

the sum of all its terms is infinite. Therefore, it

guarantees the procedure will eventually reach the peak. no

matter how far away it started (9: 162-167). The problem

with this line search is the exorbitant number of

exper..ients necessary to find the peak, especially if one

starts in a fairly flat region far from the optimum.

Keston has devised a procedure which accelerates the

search more quickly. Instead of starting with the

* .decreasing harmonic sequence, Keston's method starts with A

uniform step then shortens the step size harmonically when

the peak is crossed and the dire-ction of search revprspes

Table I compares the two methods.

d . ~~ ~ ~ I A. mr 1 r-57.



Table I Unaccelerated and Accelerated Peak-Seeking Methods

steps 1 2 3 4 5 6 7 8 total
direction + + + - + - +

unacceler 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1 149/280

* accelerate 1 1 1 1/2 1/2 1/3 1/4 1/5 2 17/60

'. .(9: 180)

As with Robbins-Monro, the Keston method insures one of

finding the peak and it achieves results more rapidly.

However, it still takes numerous experiments along the

*vector to find the peak of the vector.

An improvement over the Keston is the golden section

search. It uses a large step size to cross over the peak.

, Once the peak is crossed an interval exists wherein the peak

is located. The golden search technique can now be used

reduce the interval of uncertainty. Golden search splits

the interval with the peak into two segments sich that the

ratio cf the whole interval to the larger segment is *he

same as the ratio of the larger segment to the smaller.

* The golden search plan works as follows: Let the

initial interval that brackets the peak be called d with

endpoints of zl and z2. Next, place 2 experiments inside

*i this interval z3 and z4 such that z3azi 0 38*d and

z4:zi+0.62*d. If the y response of z3 is laroer than that

for z4, the interval of uncertainty is from zi to z4.

Otherwise, if the y-response of z4 is larger than z3, the

* II - 16
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new interval is from z3 to z2. This procedure is then

continued for the new interval of uncertainty. Golden

search will reduce the initial length of the interval of

uncertainty by (0.618)n - where n is the number of

experiments used. For example, if eleven experiments were

used, the new interval would be 0.008 the size of the

original interval (4:42-43). In addition. Himmelblau

*recommends a sequential series of larger and larger steps

along the vector to expedite the initial bracketing of the

peak. The golden search is quite efficient compared to the

previous methods and other interval uncertainty methods

Wilde provides an excellent comparison of golden section to

other interval methods (9:28:29). However, there is a

method of fitting a polynomial to the points that is even

more efficient than golden search.

The last unidimensional line search that is examined.

and the one used in this computer program, is the Davies,

Swann, and Campey (DSC)-Powell Search. This method invclves

bracketing the peak (DSC portion) and the fitting of a

quadratic equation (Powell portion) to interpolate an

estimate of the peak. G.F. Coggins shows that this

technique involving the fitting of a second-order polynomial

through selected points was better at locating the peak to

within a speci f ied precision than the interval methods such

as golden section (4:44),

V
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The Davies, Swann, and Campey (DSC) portion is used to

bracket the peak. It involves doubling the step size for

each step until the peak is overshot. After the peak is

overshot, the direction is reversed and previous interval

used is reduced by one-half. This is used to obtain one

more point. This procedure will give four equally spaced

points. The two middle points y-values are compared for

optimum. The point with the optimum y-value plus the two

points used for fitting the quadratic since the peak sholjd

be inside this interval. See figure 2 below.

S

Figure 2. Davies, Swann, and Campey Technique

Powell's equation carries out a quadratic approximation

using the three points. The optimum (critical point) is

found by taking the first derivative of the equation.

Powell's equation (4:46) is as follows:

(x2 2 -x ) 4+ 3x-xl) t2+(xl-x2)t3 (12

11 IR1
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The equation used in the computer program is of a

slightly different form. The derivation of the computer

equation is as follows:

Let pl, p2, and p3 be the three points and tI, t2, and

t3 be their respective y-value. Let c be the equal distance

between the points. The quadratic equation to be fitted i :

of the form yzbo+blx+b2x 2  with derivative dy/dx=2bx+b!=O

implying the optimum of the equation is x=-bl/2b2

Putting the three points into the equation and solving

simultaneously one gets

bO+blpl+b2pl2 =tl (13)
bO+blp2+b2p2 2 =t2 (14)
bO+blp3+b2p32 =t3

note: plipl p2:pl+c p3=pl+2c

by matrix notation,

bO bI b2

p 1 p 1 t I
"I1 pl+c (pl+c)2  t2

I p1+2c (pl+2c)2  t3--

pI p 2 p t1
I 0 c 2 cpl+c 2  t2-tI I
--O 2c 4cpI+4c t3-tl ---

0 -p1 (pl+c) (ct l-p t t'2 pt + P
0 2 pl+c (t2-tl)/c

--O 0 2c tI-2t2+t 7

note: let d=tl-2t2+t3 and e=-3ctl 4ct?-ct3

1 0 0 (pI 2 *d+p*e+?ct1 ) * e-+2
0 1 0 (-2pl~d-e). -'c-

2 0 1 d/2c

×":-1-2p1#d+e)/2c- 16)
S, 2(di2c2 )
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This final equation is used in the computer program.

WIt looks quite different from Powell's equation. However,

if x2 and x3 are substituted by xl+c and xl+2c,

respectively, then Powell's equation reduces to the one

above. As mentioned earlier, the DSC-Powell method is the

line search selected for the program. This selection is due

to its quickness in finding the peak and its accuracy.

After finding this first point (pl) from the initial

point (p0), one can repeat the gradient phase around pl to

find a new direction to proceed. The line search (DSC-

Powell) is again employed to find the next point (p2). A

repetition of gradient and line searches can be continued

until the optimum is reached. This intuitively attractive

idea of climbing the steepest path is known as the gradient

method, or the method of a steepest ascent (9: 107). The

advantages of the steepest ascent method are: (1) It tends

naturally to avoid saddlepointsand (2) It will eventually

converge for any unimodal function, even when there is

appreciable experimental error (9:120-121). The steepest

ascent method is one of the two algorithms of the computer

program. In the program, it is called the gradient/line

method.

•- An algorithm that accelerates faster than steepest

ascent is the parallel tangent (PARTAN) method. There are

several variants of the PARTAN method. The variant used is

the 'steepest ascent PARTAN". This method is also often
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referred to as 'gradient PARTAN". The PARTAN method is just

like steepest ascent in finding the first two points pOand

pl. After finding pl, the PARTAN method eliminates the

experimental design around pl for the next direction. The

gradient to be used at pl is the gradient perpendicular to

the gradient of p0. This direction will form a plane that

is parallel to the contour tangent plane of pO, where the

name PARallel TANgent (abbreviated PARTAN) comes from. The

perpendicular gradient can be found easily by swapping the

previous slopes and reversing the sign of one of them. That

is, if bl and b2 were the slopes at pO, then now at pl the

slopes are bl=-b2 and b2=bl. A line search is then

accomplished along this plane to find the peak, which is

point p2. After finding p2, PARTAN eliminates another

experimental design around p2 for the next direction.

Instead of the 2-k factorial design, it connects a line from

p0 through p2 for a new gradient direction. A line search

is then accomplished starting at p2 and going along this

vector direction to find p3. P3 is the optimum or verv

close to it. When the response surface contours are

concentric ellipsoids, PARTAN will locate the optimum

exactly after no more than 2k-i unidimensional line sear-hes

(where k is the number of independent variables) (9:124).

This means that point p3 (mentioned above) will e the exact

optimum for a 2 independent variable deterministic problem.

Thus, after one initial gradient sear -h (4 experiments) and
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three line searches (about 5 experiments each), PARTAN

locates the optimum. Whereas the gradient/line uses two

gradient searches (4 experiments each and two line searches

(about 5 experiments each) per zigzag. Therefore, one can

conclude the PARTAN algorithm is indeed a more efficient

method for certain quadratic problems.

Even when the contours are not precisely elliptical,

PARTAN has certain ridge following properties which make it

attractive especially when the ridges are straight (10:323).

In addition, PARTAN will work perfectly in two dimensions

for any radially similar contours since the property of

parallel tangents works for these (9:144). Even for other

non-ellipsoidal surfaces, PARTAN can still work. It is just

that PARTAN will generally not be right at the optimum after

one cycle, but this does not prevent starting over again

using point p3 as the beginning of another PARTAN search.

The geometric reason PARTAN works (finds the top of the

hill with so few line searches) can be simply explained

using a contour plot of the response surface. See figure 7.

Let a point p0 be randomly selected and a line be drawn from

p0 to the center of the ellipse, p3. One will notice that

this line pOp3 intersects each contour ring at the same

angle. Next, the contour tangent planes, t(i)s, are drawn

at the point of each of these intersecticns. (]ne w,11

observe the planes are all parallel. Also. the pnint of

intersection with the contour ring is the optimum point

II - 22
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along the plane line for each tangent plane. Next, the

gradient vector g at p0 is perpendicular to the contour

tangent plane, tO, At p0. Thus, perpendicular to all the

other contour tangent planes drawn.

The PARTAN method described above would follow theV

darkened path in figure 3. Starting at p0, FARTAN

calculates the gradient vector,g. It goes along this vect :r

to the vector peak, pl. It then moves on a vector

perpendicular to g at pl to the vector peak. p2 It

connects pO to p2 and follows this vector to its peak, p7.

This described method will be called the PARTAN/line method

for the rest of this paper and in the computer program.

There is still another improvement to the search

method. Faix proposes an efficient improvpment upon the

PARTAN/line method. Faix states,

The method only works exactly for perfect
quadratic response surfaces with no noise. However, it
will be shown to be relatively robust against many

*types of imperfection, and thus a good methodolL9v
choice [l:180].

This improvement, to be called the PARTAN/FAIX method,

eliminates the line search from p2 to p3. The PARTAN'FAIX

* - I -
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method calculates the distance from p2 to p3 by using the

results from points pO. pl, and p2 to find the eccentricity

of the ellipse. The eccentricity, e, measures the stretch

of the ellipse. The eccentricity of an ellipse is equal to

c/a in figure 4 and ranges from 0 to almost 1.

- -,
Ii

Figure 4. Eccentricity of an Ellipse

The eccentricity is zero for a circle and approaches one as

the major diameter increases in ratio to the minor diameter

* (10:379-399). For a quadratic equation,

y=bo+blxl+b2x2+bl1xl 2 +b22x22  one can relate the

coefficients, bil and b22, to e. The square root of

(b22/bll) is equal to the a/b in figure 4. Therefore, if

b22 is greater than blil. then e is equal to the square root

of (1-bll/b22) and if bil is greater than b22, then e is

equal to the square root of (b22/bll-l). In agreempnt with

Faix's notation, b22/bll will be called the variable c

(1: 186)

I 25

%-.. . . . . . . . . . . . . . . . . . . . . .."'"." ' . " - "



The variable c can be found geometrically usirLe the

points p0, pl, and p2 of a PARTAN search. Using figure,

c:(1+mo*r)/(mo*r-(mo)**2) (18)

where

mo= r4/r5, the known slope of line r3 between pO an p3
r= rl/r2, the ratio of lines rI and r2

% rl= the distance between pO and p1
_% r2= the distance between pl and p2

r3= the distance between pO and p2

r4= the distance x22-x20
r5= the distance xl2-xlO (1 182)

Using the variables c, mo, and r3. Faix derives the

length of the acceleration step between p 2 and p3 in

multiples of r3. The length between p2 and p3 equal r3*assu

where (1:182)

I"
assu: ) mo * (c-1) * c] / C I + (c~mo) 2] 2 ( 19)

There is an equally efficient method to the PARTAN/FAIX

method. One may notice that instead of using the parallel

plane, t3. any of the other parallel planes would have

worked for PARTAN. Thus, instead of doing a line search

from pO to find pl, choose any distance to place pl from pO.I

% A unit step of I is offered as an option in the computer

program. Then do a line search perpendicular to find p2.

16 Connect pO and p2 and do a line search in this direction to

find p3. This would entail just two line searches

comparable to the PARTAN/FAIX method.
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Second-Order Exploratory Phase

Both the beginning and the end of a search ,nve-'.ve

local exploration. The beginning being a simple linear

study near an arbitrary point to get to the gradient

direction. At the end of the search, a nonlinear

exploration in the vicinity of the optimum is accempl.,sheJ

to insure the optimum was found (9:75) This end

exploration may actually find a point nearby that is better

then the optimum found by the algorithm This could be

caused by error in the simulation or testing process In

addition, this final exploratory phase will show the

behavior of the response surface near the optimum.

A 3-k factorial design is used to provide the seccn.i-

order equation fit. This design was discussed under the

gradient phase. The difference now is once the coefficients

are found, they are fitted into a derived equation for the

critical point.

xlf=xlO+[ (-b2*bl2) + (2*bll*bl) ]/[ (b12*b12)-(4*bll*b22) ] (20)

x2f~x2O+[ (-bl*bl2) +(2*bll*b2) ]/[ (b12*b12)-(4*bll*b22) ] (21)

If (4*bli*b22) is less than (b12*b12) , then this

point is a saddle point. Otherwise, if bll is less than 0

and b22 is less than 0, then the point is a maximum. If bil

and b22 are positive, then the point is minimum. Thus, the

coefficients bli and b22 describe the shape of the response

surface around the optimum.
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s ummary

This chapter reviewed the literature and methodology

that lead up to the writing of the compute- program. The

next chapter describes the actual computer program and how

it works.

I 2
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III. Program Description

This chapter describes the flow of the computer

program The complete program is contained in Appendix A.

v The program is written in FORTRAN on a VAX computer but

could be transferred to a microcomputer for further use

Before running the program. the subrout.ne SIM must be

4qIP modi f ied in two ways

i) Line 18 of the subroutine must reflect whether the

problem is a mtnimizaticn Dr maximization. This is d-ne tv

removing the letter c in the first column of line i8 for a

minimization and ensuring the letter c is in place for a

maximrzat :on The letter -c:mments out line 18 for a

i maximrnatln problem.

2 The problem simulation must be loaded into the SIM

subroutine starting at line 14. if the simulation or

4 experimentation is to e r7in externally of +he program,

column I in line 14 gets a letter ,ad!Je and cclumn i.

n l and g et the letter c removed

Main Frogram

The main program is -al ed S:'EARCH A f lI w I iararm -

SEARCH is shown in figure t The pr-gram has r.'ime

,nteractive optlns for the ';ser - ,.-w +hp ';svr +he

freedom to work a variety of pr-t ems H-wever .he pr-grarr,

F29
%°4



is mainly designed to efficiently optimize quadratic

problems.

SEARCH consists of repetitions of asking the user to

make a choice and then calling the subsequent subroutines

and showing the outcome for that choice. This allows the

program to step along from point to point toward the

optimum.

The program begins by asking the user for the point 0

xl and x2 starting coordinates. It then calls the

subroutine SIM, which gives the y response for these inputs

and the main program writes these values to the screen and

output file. At this point, it automatically calls the

subroutine TWOK. TWOK does a 2-k factorial design and RSM

fit to find the gradient directions. If the linear equation

is of a flat surface, thus having no gradients. the main

program will end for there is no direction to climb at this

point. Otherwise, the main program will write to the screen

and the output file, the normalized gradient directions.

This gradient direction is the best direction for climb:nr.

Next the main program will prompt the user for how far

to travel in this gradient direction. The two options are:

one unit step or to the peak in that direction. The first

option should be used only if the response surface is

ellipsoidal. The second choice might, be used with FARTAN -r

the steepest ascent method. With the choice made, the
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|A

program will calculate point 1 and write the location of

point I to the screen and output file.

4F Proceeding from point 1, the main program calculates

the gradient perpendicular to the last gradient direction

and writes it to the screen and output file. It then calls

subroutine LINE to find the peak along that gradient line.

After calling SIM, it writes the calculated point 2 to the

screen and output file.

At point 2, the user decides to use the PARTAN method

or continue the gradient/line method. If option 1 (gradient

/line) is selected, then the perpendicular gradient is

* calculated and written. The program calls subroutine LINE

to find the peak in this direction. This is followed by the

subroutine SIM. The grad/line point 3 is then written to

the screen and output file. If option 2 (PARTAN) is

selected, then the subroutine PARTAN is called to ca>'late

the gradients. These two gradients are written to the

screen. With the PARTAN directions, the prooram offers ...e

user the option of doing a line search or a FAIX :unimp o h-

next point. If a one unit step was selected at point 0,

6 then a line search must be selected. Otherwise, the se-cnd

option (FAIX method) is the most efficient and, if selected,

the main program calls the subroutine FAIX to (cmpute .he

* PARTAN/FAIX point 3.

Next, the main program offers the uiser to choose which

of the previous three options he wants to use for point 3.

3
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This is included in case more than one option was selected

Point 3 is then written to the screen and the output file.

Finally, the main program asks the user if he wants to

exit at this point, repeat the whole process again using

point 3 as the new initial point, or to do a 3-k factorial
e

design and RSM to better locate the final point. If the

user is confident the surface is ellipsoidal and there was

little error in the input values, then one should be at the

optimum and exiting is the correct choice. If the user is

sure the optimum has not yet been reached, maybe due to the

complexity of the surface, then repeating the process again

would produce the better answer. If the user feels close t

the optimum, but point 3 is slightly off, then 3-k Jesign

with RSM will help to find the final optimum.
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T WQXK_auhru tine

This subroutine fits a 2-k factorial design around a

point and uses RSM to fix an equation to the four points.

The coefficients of the equation are used for the gradients.

Figure 6 is the flow diagram for the TWOK subroutine. The
S

subroutine begins by stating the radius of the 2-k fact,:rial

design and asking the user if he would like to change the

radius size. After the radius size is determined, the

coordinates of the four corner points are calculated. With

these coordinates, the subroutine SIM is called and the

response values found. Next, the maximum y-value cf the

four points is called the variable, m. This variable is

compared to the initial point response, yO. If vO is larger

than m, then there appears to be no uphill direction from

the initial point. Therefore, the subroutine RSM is called

for an exploratory search of the optimum within this area.

Otherwise, the four y-responses are used to calculate the

coefficients of the first-order equation. Of these ftour

coefficients bO, bl, b2, and b12, bl and b2 are used as the

xl slope and x2 slope, respectively. If both of these

values are zero, then there is no slope in this area anA The

program will print 'Try a new starting point.' and end

Before bl and b2 are passed back to the main program, the

subroutine normalizes their value. The control then retrns

to the main program.
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srchange the call S
radius size

if yOm

call rsm

calculate
end coefficlentc

if bl=O and b2=0

end

normal i ze
gradients

return to
main

Figure 6. Flow Diagram of TWOK Subroutine

LINE SubrQutine

This subroutine finds the peak in a vector direction

using the DSC-Powell algorithm. Figure 7 is the flow

diagram for the LINE subroutine. The subroutine first

calculates a point that is 2 units in the gradient direction

from the starting point. After calling SIM to get the y-

response, it checks to see if the response was an increase

%I -



over the initial response. If it was not an increase, the

subroutine reverses the gradient direction and calculates a

point 2 units in the other direction. It again calls SIM to

get the y-response. If this too was not an increase, the

program curve fits these three points to find an optimum.

If either direction had been an increase response, the

subroutine would double the step size and calculate the next

point. It would continue doubling the step size until it

has either gone 10 steps(to prevent a continuous loop) or

got a response that was a decrease from the previous step.

Once it gets a y-response that is a decrease, it cuts the

step size in half and reverses the vector direction. This

gives four equally spaced points. The subroutine compares

the 2 middle responses. It uses the point with the larger

response and the points on both sides of it to curve fit an

equation. The first derivative of this equation is 1ised to

find the optimum point along the vector. This optimum point

is then returned to the main program.
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b 7

by asking the user how many repetitions of the problem is to

be accomplished at these values. The default is 1

simulation. It then loops through the simulation or user

input the required number of repetitions. The subroutine

then averages the responses to get one value to pass back to

the program. Also, by enabling line 18 the program can run

minimization problems by doing a negative maximization.

*

!start! -reads number
I of repetitions

gets the
y response

averages return

'the response L

Figure 8. Flow Diagram of SIM Subroutine

PABTAN Subro.utine

This short subroutine takes the coordinates of point 0

and point 2 and calculates the slope between these two

main program to be used as the next gradient direction.

I1 - 38
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FAIX Subroutine

This subroutine takes the coordinates of points 0, 1,

and 2 and calculates the distances between these points. It

also calculates the slope between point 0 and point 2. It

then computes the ratio of the distance between pO and pl

over the distance between pl and p2. With these values, the

subroutine determines values for the variables c and assu.

Finally, it uses assu and the distance between pO and p2 to

estimate the location of the p3 coordinates. After calling

SIM subroutine to get the y-response for point 3, it returns

to the main program.

RSMSubroutine

This subroutine fits a 3-k factorial design around a

point and uses RSM to fit a second-order equation to the

nine points. The first derivative of the fitted -quation is

used to find the critical point in this area. The secor, d

derivative test is then used to determine whether the

ritical point is a maximum, minimum, or a saddle point.

Summary

This chapter described the procedures of the SEARCH

program. It looked at the contents of each subroutine

andthe flow of the main program. The next hapter !-,s-issPs

how well the program works.
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IV Validatuon of Frogram

,V

A validation of the program will be accomplished by

taking a known quadratic equation and comparing the SEARCH

w program output with the known mathematical values. See

figure 9 for the output file. The equation is y = 10-

5(xl+l)2 -15(x2-2)1 An initial point of (6,9) will be used

* to start the program.

The first check is of the gradient around the initial

point. The SEARCH program obtains gradients of (-

0.3162278,-0.9486833). The first derivatives of the

equation are (-10(x+l),-30(x-2)) and at the initial point

(6,9)would yield (-70,-210) as the gradients. If (-70,-210)

w is normalized, one gets exactly the same values as the

SEARCH program obtains. Thus, the TWOK subroutine does

obtain accurate gradients.

The next check is of the line search to point 1. The

SEARCH program used four steps to get to point 1. It used

three steps before it passed the vector peak and one reve-rse-

-step to evenly space the points. After curve fitting, the

program obtained point 1 as (3.5,1.5). This point I is 7 Q

* unit gradient steps frum point 0 with a Y-value m -D

To check the accuracy of this line so-arch, -ne -;kn hk 9

and 8.0 unit gradient steps. This gives v-values of -95,156

and -95. 1245, respectivelv Thus, the line sear-h was quite
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accurate in selecting the peak value along the gradient

vector.

After point 1, the program computes gradients that are

perpendicular to the first set of gradients. One can see by

inspection that the new gradients (-0.949,0.316) are

perpendicular. Thus the calculation is correct.

Another line search is accomplished after just three

steps to find point 2. The SEARCH program after three steps

finds point 2 as (-0.25,2.75) with a y-value of -1.250020.

Using 3.9 and 4.0 gradient steps to check the accuracy, one

gets y-values of -1.2657 and -1.26336, respectively. Thus
&,

the line search is very accurate again.

Next, the program calculates the PARTAN gradient as

0.707,-707). This is the slope between point 2 and point ,

(2.75-9,-.25-6) and are the same values once normalized

Finally, the FAIX subroutine calculates point 3 as -

1,2) with a y-response of 10. This can be checked by thp

format of the equaticn as the actual optimum. The RiM

subroutine is also ran, but shows it is unable to imprcv-

the optimum.

This demonstration by example has shown the acciracy .f

the subroutines that make up the program. The output from

other problems are contained in Appendix B.

The efficiency of the SEARCH program is evdIent by hp

few simulation riins rpquired The abrnve pr~blm needed a
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Problem: y=l0-5(xl+1)**2 -15(x2-2)**2

point O= 6.000000 9.000000 -970.0000

5.500000 8.500000 -835.0000
5.500000 9.500000 -1045.000

6.500000 8.500000 -905.0000
6.500000 9.500000 -1115.000

bO,blb2,bl2 are
-975.0000 -35.00000 -105.0000 0.00000¢0E+00

slope in xl direction is -0.3162278

slope in x2 direction is -0.9486833

5.367545 7.102633 -583.2812

4.102633 3.307900 -145.8434
1.572811 -4.281567 -614.9680

2.837723 -0.4868333 -156.4057
point 1 3.500000 1.500000 -95.00003
the new slope for xl is 0.9486833

the new slope for x2 is -0.3162278
5.397367 0.8575440 -213.8684

1.602634 2.132455 -24. 13168
-2.192100 3.397366 -26.39499

-0.2947329 2.764911 -1.263333
point 2 is -0.2500001 2.750000 -1.249993

partan slopes are -0.7071068 -0.7071068
rl,r2,r3,r,mo are
7.905694 3.952848 8.838835 2.000000 1.000000

c: 3.000001

assu- 0. 1200000
faix point 3 is -1.000000 2.000000 10.00000
point 3 is -1.000000 2.000000 10.00000

-1.500000 1.500000 4.999996
-1.500000 2.000000 8.749999
-1.500000 2.500000 5.000003
- %O)O00 1.500000 6.249997

-1.000000 2.000000 10.00000
-1.000000 2.500000 6.250004

-0.5000001 1.500000 4.999998

-0.5000001 2.000000 8.750001
-0 5000 2 .500000) 5.000005
bO,bl,b2,bl 1,b22,b12 -

6.666667 1.1126200E-06 3.6557515E-06 -1.250000 -3.7500C0

1.1920929E-07
the final point is -1.000000 2.000000 10.00000
(xlfx2f) is a maximum point.

Figure 9 Output from Sample Problem
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mere twelve simulations to find the optimum plus eioht

additional to run the RSM accuracy check at the end.

A comparison of this program to other similar programs

is not realistic Most other programs are written to solve

complex, nonlinear equations. Reklaitis compares several of

these methods and algorithms, and was unable to determine a

superior method (7:60,120).

Summary

This chapter used an example problem as a validation ;f

the program. It showed the accuracy of the subroutines and

efficiency of the program. The next chapter recommends

further enhancements.

"d
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V. CnciuaiQn and Recommendatxonz

The overall objective of this research was to develop

an interactive, user-friendly computer package that allows

one to locate the optimum response of an unknown ob)ective

function in a minimum number of experimental trials

Subobiectives were-

1) Shoew that the techniquies chocsen were *he n-.st

efficient ,using the least number -f trials as the measure of

effectiveness

(2) Verify that the program can find the optimal

response to a sample problem.

This research effort accomplished these cb-ertives.

The program is user-friendly and solves the

Dptimizationproblem in a very efficient number of trials

It, in addition, provides the flexibility to solve even more

complex problems than just quadratic suirfaces.

Recommendations for further enhancements wcu,'.,J be t:

expand the number of independent variables that the program

can handle. This would increase the base of problems the

program can solve. Another enhancement woijld bp -, PnAti

the program to incorporate constraints. This w-:'.

its adaption to real world problems Finally. -,n ! r

user-friendlv enhancement would be to add its own iraphi,-

display of the response surface.
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Appendix A: Program Listing

program search

integer g,i,j,k,1,m

real xlO,x20,yO,bl ~b2,ri
real xli ,x21 ,yl ,xl2 .x22 ,y2 x13 ,x23 ,y3
real f 13.f23 f3 .113,123,13

4b real xlf.x2f~yf

open(7,file='output' ,status='unknowi')

c------- this portion interactively gets the starting point.
print *.'Input the starting point. This should'

*print ', be your best guess of the optimum.
print ~.'Enter the xl coordinate.'
read xl10
p r int *,'Enter the x2 coordinate.'
read *,x20
call SIM (xl10x2O0yO)
print *, 'The value for yO is' ,vO,.

2Q)write(7 ,*),'point 0=',x,x20,yO

:0 print ~,'Around this initial point~xl0,x2O) a 2Y,-' factorial'
%Pprint *.'design is accomplished to get the

print ~,'gradient (direction of ascent).
c------- this subroutine calculates the first grad.,ent.

call TWOK (xlO,x20,yO,bl~b2)
-------- this if statement is for flat surface

if ( (bi .eq.0).and. (b2.eq.0))) then

1P 9o to0 1000
nd I f

print * slope in xl direction 's'.bl
print w'slope in x2 direction is' ,b2
wrte 7 ,O) 'slope in xl direction is',bi
write(7,*) ,'slope in x2 direction is' .b2

print ' Enter 1) to 0o 1 unit ste.p'
print w,'Enter 2) to do a line search'
rea~d
.f (j eq. 1) then
x 1i x 1 . b 1
x2lzx20+b2
call SIM (xilX~1!,YV1

go to '300
end if

o--*. -his srctne'e a li.ne sear-h tc-r the next
p)oInt
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print *, 'Using the gradients, a line search will be'
print * 'accomplished to find the peak in this

direction'

call LINE (xlO,x20,yO0,blb2,xll,x21,yli)
c ------ this if statement is for lines that never peak

if (i.eq.10) then
go to 1000

end if
300 print *,'The xll coordinate is' xll

print * 'The x2l coordinate is',x2l
print * 'The value forl is' ,l,
write(7,*) ,'point 1 =' ,xll ,x21 ,yl

print *, 'Do you want to do a 2-k design to
*print * 'get the next gradient or use the

perpendicular'
print 'to the line search.'
print * 'I) perpendicular'
print * '2) 2-k factorial design
read *g

rfe(g eq. )then
r 1 = b!1
bl=-b2
b2=r

go to 25
end if

c-------this step gets a gradient at this location.
print * 'Another 2-k factorial will be done
print * 'to find gradients from this point

call TWOK (xllx21,yl,blb2)

if ( (bl eq.0) and. (b2 eq.01 ) then
go to 1000

end if
25 print ' slope in xl direction is' ,bl

print ' slope in x2 direction is' .b2
v-rite(7,*) 'the new slope for xl is' ,bl
write(7,*) 'the new slope for x2 is' ,b2

--------this step does a line search for the next point.

print , 'A line search will be done using these'
print , 'gradients from point 1.'
call LINE (xll~x21 ,ylbl~b2,x12.x22,y2.i)
c if (ieq. 10) then

go to 1000
end if

print 'The x12 coordinate is',x12
print . 'The x22 -nrdinateP i x?2
print , The value for y2 is' ,2,'
write 7, 'point 2 is' ,x12,x22 v2
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c ------ the next step lets one choose between another
gradient/line
c search or the shorter partan.

print * 'Do you want to do another gradient/line
search or'

print * 'the partan method or both"'
print * 'The partan connects point 0 and 2 for the

gradient.'
print * 1) yes - gradient/line
print * 2) yes - partan'
print * 3) ,es - compare both'
print * 'enter l,2,or3.'
read *,k
if (k.ne.2) th,-.

. call TWOK xl ,x22,y2,bl,b2)
print * ' oj bl=' ,bl
print *, 'twok b2 ' ,b2
write(7,*),'twok slopes are',bl,b2

call LINE (x12,x22,y2,bl ,b2,x13,x23,y3,i)

print * 'gradient/line new point location is'
,. print * x13,x23,y3

write(7,*),'grad/line point 3 is',x13,x23,y3

end i f
t (k.ne.l ) then

call FPARTAN (xlO,x20,x12.x22.bl ,b2)
print *, 'partan bl =' ,bl
print * 'partan b2 ' ,b2
write(7,*),'partan slopes are ,bl,b2

print *. 'do you want to do a line search or the
faix method?'

print I ' ) yes - i ne search'
print * 2) yes - faix method'
print * 3) yes - compare both'
print * 'enter 1,2,or3.'
read *l
if (l.ne. l)then

caI1 FAIX
x10,x20,xll,x2l,x2,x22 .b ib2,fl3,f23,f3)

print * 'the FAIX method calculated'

print * f13,f23,f3
write(7,*)'fax point 3 is',f13,f23, f3

end if
if (I .ne. 2) then
-all LINE (x12,x22,y2,bl,b2,113,l.23,'3 ,i)

print ' the line search found'
print * 113,123,13

write(7,*),'partan/line point 7 is' ,113,123,13
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end if
end i f

print * 'which do you want to use?'

print * 'enter I to use partan/FAIX values (if
used)

print* f13,f23,f3

print *, 'or 2 for partan/line values (if used)'
print*, 113,123,13

print ' or 3 to use gradient/line values (if
used)

print * x!3,x23,y3

read * m
if (m eq.I) then
xi3=f 13
Sx23 f 23
y3 =f3

else if (m.eq.2) then
x131 13
x23 123
y3 =13

end if
* print * 'The x13 coordinate is' ,xI3

print * 'The x23 coordinate is' ,x23
print * 'The value for y3 is' ,y3,'.'
write(7,*), 'point 3 is',x13,x23,y3
print * 'which do you want to do9 '
print * 'UI quit/exit'
print * '2) repeat process using point 3 as initial

point'
print * 3) 3-k factorial design and RSM'
read *,h
if (h .eq. i)then

go to 1000
else if (h eq. 2) then

x 10=x 13
x20=x23

yO=y 3

go to 200
end if

call RSM (x13,x23,y3,xlfx2fyf)
1000 print *, 'the end'

K- end

subroutine TWOK(xILx20.yObl b2)
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integer
real xlO,x20,yO,rf ,xln,x2n,xlp~x2p
real *yii ,*ylh,*yhh,*yhl .bl .b2,bl2,bO~norm,m
real xlf,x2f,yf

rf=0. 5

print *,'Entering 2-k factorial.'

print *,'The radius of the factorial design is',rf
print *,'Would you like to change this radiu-s ~
print I. ') yes 2) no'
read *

if (j eq. 1) then
print *, 'Enter the new radius
read r f

end if

x InxlO-r f
x2n~x2O-rf
x lp~xl0rf
x2p~x20+rt

call SIM(x in, x2n *yl 1)

print *'*yll =' *yll

write (7, *),x In,x2n *yl 1

c-all SIM(xln x2p *ylh)
print *, '*ylh=',oylh
write(7,*),xlnx2p,*ylh

call SIM(xlp .x2n, *yhl)
N print * , '*yhl =',*yhl

(W wr ite (7 ,*),xlpx2n,*yhl

call SIM(xlp x2p *yhh)
p r int #,'*yhh =',*yhh

write(7,*),xlp,x2p,*yhh

m=~ amaxl(*yll,*ylh,*yhl,*yhh)

p r int ,mz ,m

i f (yO gt m) then
print *, 'yo is larger'
call FISM (xlO,x2O,yO),xlf~x2f,yf)

* b2 ()
go to 703

end i f

tbCr=*yil+*ylh+*yhi+*vhh)/4
bir (-*yil-*ylh4*yhl+*yhh) /4
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b2=(-*yll+*ylh-*yhl+*yhh)/4
bl2=(*yll-*ylh-*yhl+*yhh)/4
print * 'bO=' ,bO
print * 'bl=' ,bl
print * 'b2=' ,b2

print * 'b12 ' ,b12
write(7 *),'bO,bl,b2,b12 are'

write(7 *) ,bO,bl,b2,b12

print *, 'note interaction of b12

if ( (bl .eq.0) .and. (b2.eq. 0)) then
if (bO eq. yO) then
print * 'the surface is flat in this area'
print * 'y=' ,bO

*else if (yO .gt. bO) then
print *, 'max point in this area is ,'vO

else if (yO .it. bO) then
print *, yO, 'is a minimum point in this area'

end if
print *, 'try a new starting point'

go to 70
end if

norm=( (bl**2)+(b2**2))**0.5
b 1 =b 1/norm
b2=b2/norm

70 continue

return
end

subroutine SIM(xl,×2,y)
real xl,x2,y,w(lOl ,u,v
integer repi
rep=

C print * Enter the nuimber of repetitions of *the
simulation'
c print w wanted at this point to reducP
experimental error.

read *,rep

y 0

do 20 1=Irep

11 xl
vx 2

c ------ this is the place to insert the simulation.
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c ------ the next line changes the problem to a minimization

c -.....--- remove the c in column 1 of line LB to minimize
------ insure the c is in column I of line IB to maximize

* 18 w( I) -w( )

y=y+w( i )
20 continue

y=y/rep
print *,xlx2,y
return

end

subroutine LINE(xlOx20.y0 ,bl b2,zl ,z2,yz,i)

integer i,n
*11 real xl (0: 10) ,x2(0: 10) ,y( O: 10) b ,b2

real xlO,x20,yO,tl ,t2,t3,c d,e ,f ,zl ,z2,yz
real sl,s2,s3
n 1

print *, 'Entering line search.'
:0

xl* I) xlO
x2 ( ) =x20

y i) :yO

10 1: +I
* 5 xl (i)=xl (i-1)+ ((2**i)*bl)

x2(i ) x2(i-i) + l C2 *i) b2)
s I xl 1)

S2 x2(i)
call SIM (sl s52,s3)
y(I:) =s3

print *, xI(i)
print * x2(i)
print * y(i)
write(7.*) xl(i) ,x2(i ,y~i)

if (y( ). It .yO) then

print *, 'yl It vO'

if' 'n.eq.1Pthen
bi '-bl
b2: -b2

t3:y (1)
n:2

print * 'bl,b2,t3,n are'
print . blb2,t2 ,n

go to
else i f (n eq 2) then
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t I =y (1)
t2:yO
c -2 .0

print *, 'tl,t2,c are'
print , tl,t2,c

go to 15
end if

end if

if( y(i) .gt. V(i-1)) then
1if (i eq. 10) then
print *, 'the surface has increased for 10 steps
print ' in this direction. It appears to go to'
print *, 'infinity for a optimal point.'

4 print * 'start with a new point.'
go to 80

, else

go to 10
end if: else

- i=i~i

xl (i) xl (i- ) - (bl* 2**(i-2))
x2(i) x2( i ) - (b2* 2**(i-2))
call SIM (xl(i) x2(i) y(i))
print xl(i)
print * x2 (i
print * y(i)
write 7 * xl 7 2 i ,y

end i f

i f (y I) ge. ;(i-2)) thern
t I y (1-2)
t2:y ( i

1P 3y (11

else
t Iy( i -3)
t2:y ( i-2)
t 3 y I )

end if

print *,tl t2,t3

=2* *( i-2)

15 print *, 'hello'
ditl- (2*t2) +t3

if(d.eq O)then
[ A*: .00000

end i f
e= (-3.0*c*b *t1 +f4 O*c*blt2) bo*t3)

f -3 0 *c*b2*t I + (4 0*-*b2*t,2) - t 2b2 t3)
print *.c,d e,f
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if (tl eq. y(i)) then

zl= xl(i) - 0.5*e/d
z2= x2(i) - 0.5*f/d

else if (ti -eq. y (i-2) then
zl=xl (i-2) -0.5*e.'d

z2=x2(i-2) -0,5*f /d
else if (tl eq. y(i-3)) then

zl =  xl(i-3) - 0.5*e/d
z2= x2(1-3) - 0.5*f/d

end if
call SIM zl,z2,vz

60 print *,zl,z2,yz

80 continue
*return

end

SUBROUTINE PARTAN (xl0.×20.,12,x22.bl.-'

real xlO,x20,x12,x22.b1.b2,norm

print *. 'Entering PARTAN.'

bl: x12 - xl0
b2= x22 - x20

norm ((bl**2) + (b2**2) **0.5

bI= b 'norm
b2= b2/norm
print ' PARTAN bl iS' bl
print * 'PARTAN b2 i< ,b2

return
end

SUBPCUTI NE FAIX
xl . x20,x 1 . x I xl2,x22 bl ,b2,xl3,x23,y3

real xlOx20,xllx21 ,x12,x22,bl .b2,x13,x23,yv
real mo,rlr2,r3,r,c,assu

print *, 'Entering FAIX.'

c------- mo is the slope between point 0 and point - tn xlx-
space

mo (x22-x20)/(xl2-xlO)

c------- rl is the distance between point 0 and point
rl= sqrt( (x1l-xl0) * 2 + (x21-x20) **2)

c ------ r2 is the distance between point I and otnt 2
r2=sqrt((xl2-x ll)w* 2 + (x22-x21)(* 2)

c ------ r is the ratio of these two distances
rr 1 /r2

c ------ r3 is the distance between point 0 and point 2
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r3=sqrt((x'22-x20)**2+(xl2-x10)**2)

print *,'mo=' mo

print ~,'r1=',ri
print *'r2='.r2

print *,'r3=',r3

print *,'r=',r

write(7,*) 'rl,r2,r3,r~mo are
write(7,*) rl,r2,r3,r,mo

c------- c is a parameter describing the eccentricity

c=(r *ma + ) /(r *ma -ma ** 2)

c------- assu times r3 is the assumed acceleration length
assu=(c* ((c-i) **2 *mo**2) /((1+ (c**2) *ma**2) **2)
print *'c=' c
w-rite(7,*) 'c=' c

lb wr Ite (7, *) ' assu=' assu
print *, 'assu ',assu

xl3=x12+assu*(xl2-x 10)
x23=x22+assj* (x22-x20)

call SIM (x13,x23,y3)
return

4k end

SUBROUTINE RSM (xlO,x20,ymm~xlf~x2f,yf)

real x10, x2 , x p ,x in, x2p,x2n ,rf

real *yll,ylm.*ylh,yml,ymm,*ymh,*yhl,yhm,*yhh
real bO ,b1, b2,b I, b22 ,b 12

real xlf,x2f~yf

r f =0. 5
print *, 'Entering 3-k RSM.'

x I px 10 +r f
x I n-x 10 -r f
x2prx2O+rf
x2nzx2O-r t

call SIM (xln,x2n,*yll)
w-rite(7,*) xliyx2n,*yll

call SIM (xln,x20,ylm)

call SIM (xln,x2p,oylh)
wArit#(7,*) xln,x2p,*ylh

-all SIM (xl0,x2n..yml)
write (7, *) xlO ,x2n .yml

write(7,*) x10,x20.ymm
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c all SIM (xlO x2p, *ymh)
write (7, *) x 10 x2p, *ymh

call1 SIM (xlp~x2n,*yhl)
write(7 v) xlp,x2n, *yhl

callI SIM (xlp,x20,yhm)
write (7 , ) xlp ,x20,yhm

call SIM (xlp,x2p,*yhh)
write (7, *) xlp ,x2p *yhh

30 bO=(*yll+ylm+*ylh+yml+ymm+*ymh+*yhl+yhm±*yhh)/Q.

bl=(*yhl+yhm+*yhh-*yll-ylm-*ylh)/6.0
b2=(*ylh+*ymh+*yhh-*yll-yml-*yhl)/16.0

bll1(*yll+ylm+*ylh+*yhl+yhm+*yhh-
20(yml+ymm+*ymh))/6.0

b22=(*yll+yml+*yhl+*ylh+*ymh+*vhh-
2*(ylm~ymm+yhm))/6.0

bl2=(*yll+*yhh-*ylh-*yhl)/4.0

print *,'bO =' ,bO
print ~.'bi =',bl

print *,'b2 =',b2

print *,'bli .'bll
print *,'b22 =',b22

print *,'b12 =,bl2

write(7,*) 'bO,bl,b2,bll,b22,bl2
write(7,*) bObi ,b2,bll ,b22,b12

x2f~x20 + ( (-blwbl2) +(2*bl 1*b2)) / ((b12*bl2l -

(4*bl l~b22))

xlf~xl0 + ( -b2*b12) +(2*bl l*bl ) )/( (b12*b12) -

* (4*bll*b22)j

call SIM (xlf,x2f~yf)
print *, xlf,x2f,yf
write(7,*),'the final point is'.xlf,x2fyf

* if (4*bll*b22 It. bl2*bl2) then
pr n ,Ix f x f s a s d l o n .

* printe7* '(xlfx2f) is a saddle point.'

else if( (bllt.0) .and.(b22.1t.0))then
print *, '(xlf,x2f) is a maximum point.'
write(7,*) '(xlf,x2f) is a maximum point.'

- else if( (bll.gt.0) and.(b22.0t.0))then
print *, '(xlf,x2f) is a minimum point..'
write(7 ,*) '(xlf,x2f) is a minimum point.'

end i f
return
end
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Appendix B- ?rcgram ReL;Its

Problem' y=10-5(x1-3 **2 -15(x2+ 7  **2

point O 10.00000 10.00000 457
9.500000 9.500000 -4285.000
9.500000 10.50000 -4795.000
10.50000 9.500000 -4355.000
10.50000 10.50000 -4865.000

bO,bl,b2,bl2 are
-4575.000 -35.00000 -255.0000 0 .?¢CC.00 F +

slope in xl direction is -0. 1359800
slope in x2 direction is -0.9907116

* point I = 9.864020 9.009289 -4070.0 4
the new slope for xl is 0.9907116
the new slope for x2 is -0.1359800

11.84544 8.737329 -4096.162
7.882597 9.281249 -4085.385

point 2 is 9.606606 9.044616 -4069.682
partan slopes are -0.3807506 -0.9246778
rl,r2,r3,r,mo are
0.9999996 0.2598276 1.033208 3.848704

2.428566
c= 3.000038

assu= 2.4198353E-02
faix point 3 is 9.597086 9.021497 -4057.933
8.845104 7.195260 -3183.407
7'322102 3.496549 -1736.066
4.276097 -3.900873 -142.2109

-1.815912 -18.69572 -2157.813
1.230093 -11.29830 -282 7932

partaniline point 3 is 2.999984 -6.999997
. 00000

point 3 is 2.999984 -6.999997 10 .()C00
2.499984 -7.499997 4.999965
2.499984 -6.999997 8.749922
2.499984 -6.499997 4.999879
2.999984 -7.499997 F.250043
2.999984 -6.999997 10JC000
2.999984 -6.499997 6.249957
3.499984 -7.499997 5.000122
3.499984 -6.999997 8 750079
3.499984 -6.499997 5 000036

bO b1 ,b2,bl 1 ,b22, b 2 =
6.666667 7.8837074E-05 -4.291'344E-05 1 ,

-3.750000
O.O 000000E00

the final point is 2.999995 -7.0N.ChC 10 ON n :('-
(xlf,x2f) is a maximum point.
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Problem: v lOO x2 xl-!' + I xi)-

point O= 5.000000 5.000000 -40 F
4.500000 4.500000 -24818.50

4.500000 5.500000 -21768.50
5.500000 4.500000 -6632t 50

5.500000 5 500000 -61276.50

bO,bl,b2,b12 are
-43547.50 -20254.00 2025.0 0

slope in xl direction is -0.945u39.
slope in x2 direction is 9.9484265E-02

3.009922 5.198968 -1494.510
-0.9702346 5.596906 -2171.297

1 1.019844 5.397937 -1899.092

point 1 = 2.035566 5.296385 -13.9797
the new slope for xl is -9.9484265E-02
the new slope for x2 is -0.9950391

1.836598 3.306307 -1. 145913
1.438661 -0.6738498 -752.9236

1.637629 1.316228 -186.8933
point 2 is 1.853121 3.471574 -0.8685583
partan slopes are -0.8995146 -0.4368905

"-" rir2.r3,r mo are

2.979213 1.833909 3.498419 624516
0.4856958

C = 3.234417

assu= 0.3167595
faix point 3 is 0.8563176 2.987431 -50)8 '4)3
point 3 is 0.8563176 2.987431 -508.1407
point 0= 0.8563176 2.987431 -508.1403
0.3563176 2.487431 -557.5954

- 0.3563176 3.487431 -1129.689
1.356318 2.487431 -42.09572
1.356318 3.487431 -271.6623

bObl,b2,b12 are

-500.2607 343.3817 -200.4151 85.631w
slope in xl direction is 0.8636594
slope in x2 direction is -0.5040758

2.553637 1.979279 -2207.654

-0.8710013 3.995582 -1051.278
point 1 0.4109897 3.247347 -948.0226
the new slope for xl is -0.5040758
the new slope for x2 is -0.8636594
-0.5971618 1.520028 -137.9068
-2.613465 -1.934610 -7695.244

-1.605313 -0.2072911 -782.0326

point 2 is -0.6546982 1.421448 -101.3068
partan slopes are -0.6943644 -0,7196236
rl,r2,r3,r,mo are
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0.5156290 2.114142 2.17t614
!036377

= -1.525327

assu: -0.8533999
faix point 3 is 0.6348025 2.757358 -554 p310
point 3 is 0.5348025 2.757858 -554.63910
point O= 0.5348025 2,757858 -554.5810
0.6148025 2.737858 -557.0496
0,6148025 2.777858 -576.0886
0.6548025 2.737858 -533.3094
0.6548025 2.777858 -551.9421

bO,bi,b2,b12 are

-554.5975 11.97165 -9.417908 0 10i525
slope in xl direction is 0,7859479
slope in x2 direction is -0.6182927

* 2.206698 1.521272 -1122.531
-0.9370932 3.994443 -974.8847
polnt 1 = 0 5173576 2.850250 -55 2105
the new slope for xl is -0.6182927
the new slope for x' is -v.7859479

-0.7192279 1 278354 -60. 8779
-3.192399 -1.865437 -14554.33

- 1 .955813 -0.2935417 -1705. 145
point 2 is -0.4340829 1.640818 -213 0004
partan slopes are -0.6913621 -0.7225083

-1.816807 0.1958017 -972.0287
0.9486414 3.085835 -477.8248

partan/line point 3 is -0. 1003690 1.989566
393.0498
point 3 is -0. 1003690 1.989566 -393 C)493
point 0= -0.1003690 1.989566 -393.0498
-0.1103690 1.979566 -388.2933
-0.1103690 1.999566 -396.2028
-9.0359038E-02 1.979566 -389.8306
-9.0369038E-02 1.999566 -397.7552
bO,blb2,b12 are
-393.0207 -0.7726593 -3.958778 -4.2,fq9 E-,3

slope in xl direction is -0. 1915617
slope in x2 direction is -0.9814806
-0.4834923 2.6605010E-02 -6.492270

-1 249739 -3.899318 -2987.493
-0.8666157 -1.936356 -725.6849
point I -0.4258662 0.3218570 -4 nOnFQY

the new slope for xl is 0.9814806
the new slope for x2 is -0. 1915617

1.537095 -6.1206333E-02 -987.8308
-2 388827 0 7049801 -2913.0(,0

point 2 is 0 1850708 o 2026166 -3 4QH602
partan 3lopes are 0 1577361 -0 9874813

0 5005429 - 1 772346 -409 4576
-01304014 2 177579 -468 0851
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V partan,'line point 3 Is 0. 1956938 0. 1361127

1- .603718
point 3 is 0.1956938 0. 1361127 -1 .605 18

% 0 -0.3043062 -0.3638873 -22.53949

-0.3043062 0.1361127 -1.890530
-0.3043062 0.6361127 -31.24157
0.1956938 0.3638873 -16.82205
0.1956938 0.1361127 -1.603718

0.1956938 0.6361127 -36.38538

1l 0,6956938 -0.3638873 -71.98218
0.6956938 0.1361127 -12.19446

0.6956938 0.6361127 -2.406738
bO bl b2 bll ,b22 ,b12
-21.89624 -5 151964 t.885005 -5 4 H7-

%" -25.00000

19.56938
the final point is 0.6847318 -2.5018558E-02 -24 4 .-"'
(x1f.x2f) is a maximum point.

I4
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